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We study the contour (or contact) line of a large water puddle floating on an organic liquid substrate.
The line tension u is a two-dimensional analogue of surface tension. We manipulate the line through a
vertical metallic rod. (i) When stretched by a horizontal force f, the line makes a kink characterized by
an angle 2θ (f ) 2u cos θ), which allows us to measure u. (ii) Moved sinusoidally, we generate “triplons”
of wavevectors q along the line. In the gravity regime (qκ-1 < 1, where κ-1 is the capillary length), the
measured dispersion relation is ω(q) = q1.51(0.05. An improved version of our previous dynamical model
gives an exponent 3/2.

1. Introduction
The statics and dynamics of contact lines between a

solid, a liquid, and air, in partial wetting conditions (finite
contact angle), have been extensively studied, both
theoretically1-6 and experimentally.7-13 The line elasticity
(first constructed in ref 1) is anomalous. If the line
undulates in space with amplitude uq for a wave vector
q, the energy is of the form (for small equilibrium contact
angles θE):

in the capillary regime (q > κ ) x(Fg)/γ) (where γ is the
liquidsurface tension, F thedensity,andg thegravitational
acceleration). The q factor in eq 1 comes from distortions
of the liquid-gas interface, giving energies ∝ q2, which
have to be integrated (in the direction normal to the line)
up to the penetration length (∼q-1). This elasticity, which
cannot be described in terms of a line tension (which gives
Eel ∝ q2), has been named “fringe elasticity” by P. G. de
Gennes.3 The deformation of the contact line pinned on
a single defect, calculated with the fringe elasticity (1),
decreases logarithmically with distance x from the defect
measured along the unperturbed line.4 Experimental
studies have confirmed these predictions.10

Thedynamicsof line fluctuations,describedbythe fringe
elasticity, have been studied in both viscous4-7 and
inertial6-8,12-13 regimes:

(a) In the viscous regime, the dissipation occurs mostly
in the liquid wedge. The dispersion relation can be deduced
from a transfer of elastic energy into viscous dissipation.If
η is the liquid viscosity, one gets

where ln ) ln(κ-1/a) = 10-20 is a logarithmic factor
describing the divergence of the viscous dissipation in a

liquid wedge, which involves two cut offs: κ-1 at large scales
and a molecular length a at short distances.2 For a mode
u ) uqeiqxe-t/τq, this balance leads to γθE

2 |q| ) η/θEτq ln or

with c ) γθE
3 /(η ln). Experimentally, a modulation of the

contact line has been produced by the deposition of a row
of small equidistant droplets.7,8 A liquid front is pushed
until it comes into contact with the droplets. The relaxation
of the line is in good agreement with eq 3. In these exper-
iments, the main difficulty is to obtain model substrates,
with a very small contact angle hysteresis. Even on
silanized silicon wafers, only modulations of large q vectors
can be observed. For low q, the elastic energy is weak, and
pinning by chemical defects blocks the line motion.

(b) In the inertial regime, the mechanical energy is
conserved and the modes are propagative.4 Writing u )
uqeiqxeiωt, the balance of fringe elasticity and kinetic energy
gives

M is the mass of liquid put into motion by the line
fluctuations in a region of volume q-2θE (by unit length
of the line). With M ) Fq-2θE, eq 4 leads to

These inertial line fluctuations, named triplons, have
been studied with superfluid 4He. 4He does not wet cesium,
but the large contact angle hysteresis has prevented any
observations.12 Recently, the conditions of pseudo partial
wetting of 4He on silicon wafers have allowed Poujade et
al.13 to observe the triplons and to confirm the dispersion
relation (eq 5).

This fringe elasticity holds in the capillary regime
corresponding to large wave vectors. Our aim here is to
study the opposite limit of small wave vectors (q < κ),
where gravity becomes important. Because the surface
deformations are cut off at a distanceκ-1, the elastic energy

* To whom correspondence should be adressed. E-mail:
brochard@curie.fr.

(1) Joanny, J. F.; de Gennes, P. G. J. Chem. Phys. 1984, 81, 552.
(2) de Gennes, P. G. Rev. Mod. Phys. 1985, 57, 827.
(3) de Gennes, P. G.; Brochard, F.; Quéré, D. Gouttes, bulles, perles
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of long wavelength modulations of the contact line returns
to a standard form5

where u is an effective line tension (calculated in the next
section).

u is the 2D analogue of interfacial energy between
liquid/air or liquid A/liquid B, as first pointed by I.
Langmuir. The thickness of large liquid puddles, flattened
by gravity, is

The liquid film of thickness ec coexists with the dry solid
substrate. u corresponds to the border energy between
the dry and the wet solid. The capillarity in 3D can be
transposed: minimal surfaces become minimal lines
bordering the liquidpuddles.However, theseminimal lines
are not easy to observe on solid substrates: chemical
heterogeneities and surface roughness pin the line on
defects at many scales.

But all these phenomena can easily be observed on liquid
substrate! The liquid substrate is free of hysteresis.
Moreover, for the dynamics, the viscous dissipation on a
liquid substrate is reduced: inertial regimes show up more
frequently. We study here water puddles floating on carbon
tetrachloride (CCl4).

Nevertheless, the use of liquid substrate does give
further complications: (a) deformations of the CCl4 free
surface and (b) flows induced by the water inside CCl4.
This explains why this configuration has been poorly
studied16-18 since the famous paper of Langmuir in 1933.14

In this article, we focus on the statics and dynamics of
the collective modes of the triple lines (triplons).

In section 2, we compute the line tension and also show
evidence for the presence of a 2D Laplace pressure. We
measure u directly by stretching the line with a force f.

In section 3, we drive the line with a metallic rod at a
frequency ω and we observe the propagation of the
sinusoidal deformations of wave vector q. The dispersion
relation is also interpreted theoretically.

2. Statics of Floating Triple Lines
2.1. Floating Puddles. The liquid A (water) is non-

miscible and does not wet the heavier liquid substrate B.
The spreading coefficient S ) γB - (γAB + γA) is negative
(γij are respectively the B/air, A/B, and A/air interfacial
tensions). On this substrate, a small water drop forms a
lens, composed of two spherical caps. The Neumann
construction satisfies γB + γAB + γA ) 0. A large drop is
flattened by gravity and forms a thick (millimetric) sheet
of water floating on the B liquid bath. The covered liquid
is characterized by the following parameters:

(a) Effective Surface Tension γ̃B. The energy of a floating
film of thickness e can be written as

where F̃ is the density of liquid A corrected by Archimedian

forces, F̃ ) FA/FB(FB - FA),14 and A is the surface of the
film. The effective surface tension of the coated B liquid
is γ̃B ) ∂F/∂A|Ae)cst. This leads to

(b) Coexistence between Coated/Bare Substrate. The
coexistence between the bare substrate and the floating
film implies γ̃B ) γB. This equality defines the equilibrium
thickness ec of the film

For CCl4/H2O, one gets ec ) 7.1 mm.
(c) Surface Pressure ΠA. The concept of surface pressure

was introduced by Langmuir for monolayers of insoluble
surfactants deposited on water.14 It applies in fact to all
kinds of liquid surface coatings, which are tensioactive,
that is, which modify the liquid surface tension. In our
case, the surface tension of the coated film is γ̃B. By
definition, the surface pressure of the A film is ΠA ) γB
- γ̃B. In term of the film thickness, using eqs 9 and 10 we
obtain

(d) Triple Line Tension. The boundary between the two
coexisting states (bare, coated B bath), called the triple
line or contact line, costs an energy u per unit length.
This line tension is macroscopic (of order γκ-1) and masks
the intrinsic line tension3,19 of order γa, where a is a
molecular size. u plays in 2D a role similar to that of the
surface tension in 3D. This energy tends to minimize the
length of the line. Lines make minimal curves, as sur-
faces in 3D make minimal surfaces (like spheres, hyper-
boloids, ...). We show in Figure 1 a large flat drop, initially
circular, stretched by two opposite forces applied at both
ends. The contour is composed of two arcs of circles.

(e) 2D Laplace Law. The Laplace law relates the
hydrostatic pressure to the curvature of interfaces, which
tend to minimize their area. By analogy, we can write a
2D Laplace law, which links the curvature of the line to
the difference in surface pressures. A large drop of water
has a circular shape of radius R. We can make a
transformation R f R + dR (radial dilatation of the flat
drop), which increases the surface by 2πR dR and the
contour by 2π dR. If ΠA and ΠB are the surface pressures
inside and outside the drop, the surface work is
2πR dR(ΠB - ΠA) and the line work is 2πu dR. At
equilibrium, the total work cancels. We obtain the
analogous Laplace law for 2D, which can be formalized to
any form of contour:
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Figure 1. Minimal lines: arcs of circles formed by a large water
drop laying on CCl4 when stretched by opposite forces.
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where R is the local curvature of the line. It can be positive
or negative. For our case, ΠB ) 0 outside the drop at
equilibrium. Equations 11 and 12 show that smaller
droplets are slightly thicker. More precisely, it is possible
to derive the thickness versus the radius R of the puddle:

(f) Puddles Distortions: Minimal Curves. If one pulls on
a particular point of a guitar string, it takes the shape of
a triangle. Each part has zero curvature. The problem is
not exactly the same for a puddle. If R is much larger than
κ-1, any macroscopic deformation must keep the surface
area of the A wet region constant. This restriction is
embodied in a Lagrange multiplier in the expression of
the energy of the drop, which is the 2D pressure. Any
contour which minimizes the energy obeys eq 12.

We present here a simple application of the 2D Laplace
law. A circular flat drop is pulled with equal strength f
on two opposite points. The Laplace 2D law (ΠA ) u / R)
forces the radius of curvature to be constant. The equi-
librium shape is made of two circular arcs, with an angle
2θ given by force balance: f ) 2u cos θ. If we stretch the
drop on four points, we can obtain four arcs of a circle with
a negative curvature.

2.2. Line Tension u . (a) Derivation of u . The goal
here is to derive the line tension u. u is calculated in ref
14 by a delicate balance of forces. We prefer to deduce u
from the energy cost to make puddle edges.

We decompose the interfaces in three menisci. We will
consider here one meniscus, and we will then add the
contributions of the three menisci. The relevant geometry
is described in Figure 2. The line is parallel to the y axis.
The length measured along the line (curvilinear abscissa)
is denoted s. The energy EA of the line includes both a
capillary term and a gravitational term. The profile to be
determined is denoted z ) ú(x). We have

where the first term represents the increase in surface
area over the flat film and the second term describes the
gravitational energy required to shape the film.

To find the profile ú(x) that minimizes EA, we can write
directly the equilibrium of the horizontal forces exerted
on a slice of liquid (Figure 2). If R is the angle of the
meridian tangent with the x axis,

where p(x, z) is the hydrostatic pressure (excluding the
atmospheric pressure p0): p(x, z) ) Fg(e - z).

Equation 15 simply reduces to

The integral that gives the tension EA (eq 14) then
becomes

where we have introduced two successive changes of
variable dx ) dz/tan(R) and dz ) -dRκ-1 cos(R/2). The
procedure yields

In the limit of small angles, eq 18 reduces to

This holds for one meniscus.
In the liquid/liquid case, we have to add the three values

for each meniscus, characterized by the three capillary
lengths κA

-1, κAB
-1, and κB

-1 and the three contact angles RA,
RAB, and RB shown in Figure 3. We have

2.3. Energy of a Modulated Line. We consider now
the contact line which borders the water puddle. We note
u(x) the deformation of the line with respect to the
unperturbed position (straight line or arc of circle) and
u(q) the Fourier transform of the contour.

In the capillary regime, we can generalize the Joanny-
de Gennes expression.

where γ̃-1 ) γA
-1 + γB

-1.14,16

In the gravity regime, deformations are screened at κij
-1.

The energy (as for a guitar string) is proportional to the
increase of the contour length:
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Figure 2. Geometrical parameters involved in the calculation
of the line energy (EA) for one meniscus at the border of a liquid
puddle (cross section).

Figure 3. Border of a water puddle: schematic representation
of the three menisci at the liquid/liquid/air contact line (cross
section).
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with u given by eqs 18-20. Sekimoto et al.21 give an
expression which interpolates the two trends (in the small
angle approximation):

In our studies, the angles are quite large and this
expression is not exact. Nevertheless, in the gravity
regime, studied here, we have an exact derivation of the
line tension valid whatever the angles.

2.4. Experimental Determination of u . Several
techniques can be used to measure line tension u. As for
monolayers, one can measure u by following the relaxation
of the contour of puddles distorted by electrical or mech-
anical forces.20 We use here two static methods: (1) a
classical technique proposed by Langmuir14 and (2) a direct
measure of the force exerted by the line on a vertical rod.

(a) Choice of the Two Liquids. We use deionized water
deposited on carbon tetrachloride (CCl4, 99.8%). In Table
1, we summarize the relevant physical parameters (from
ref 22) for our system (A for water and B for CCl4).

We have first studied the configuration of puddles of
increasing volume V. From the measure of the radius R
versus the volume V, we can deduce experimentally ec, as
first pointed out by Langmuir.14 We deposit large drops
of water on the substrate and form puddles. We have a
relation (at first order in 1/R) between the volume V of
water and the radius R of the puddle:

∆V is the volume correction of the puddle compared to a
cylinder of radius R and height ec (which is proportional
to R). Drawing V/πR2 versus 1/R, we determine ec ) 7 (
0.1 mm. We could also deduce u from the slope of the
curve, but this method is not accurate because the major
contribution comes from the volume correction. Thus, the
measurement of u needs more refinement.

(b) Direct Measurement of the Line Tension. To measure
directly u, we first anchored the line on two points to
make it straight. We used a rectangular (length, 26 cm;
width, 10 cm; depth, 5 cm) glass container; half of the
edges are covered by a Teflon strip not wettable by water.
In this way, the contact line is straight and well anchored
at rest. By using a metallic thin vertical rod, which anchors
the line, we can pull or push the line and deform it. We
can also use these rods as 2D defects, which pin the line.
The rod is linked to a commercial strength sensor which
gives the force f acting on the line (Figure 4). This force

is balanced by the line tension force: f ) 2u cos θ. By
measuring f for different angles, we obtain the plot of f
versus cos θ, shown in Figure 5.

We obtain a linear variation of the force versus
cos θ. We noticed a slight deviation when θ tends to
0 or π: the line makes a kink (involving high q val-
ues where the gravity regime no longer applies). By
measuring the slope of the straight line, we find u ) 0.174
( 0.015 mN. This value is lower than the calculated value:
0.20 ( 0.01 mN. [To calculate u, we have to know the
angles RA, RB, and RAB. We did that by using (See ref 23)
2γABγA cos(RA - RAB) ) γB

2 - γA
2 - γAB

2 and eq 16, giving
2(κA

-1 sin(RA/2) + κB
-1 sin(RB/2)) ) ec(1 - FAFB) and 2(κA

-1

sin(RA/2) + κAB
-1 sin(RAB/2)) ) ec. From eqs 18-20, we

obtain a value of u for the water/CCl4 system: u ) 0.20
( 0.01 mN, where the error bar comes from the uncertainty
on the surface tension values.] Impurities can modify
surface energies and decrease the line tension. This may
explain the slight difference.

3. Dynamics of Triplons
We study now the oscillations of the triple line at wave-

lengths larger than the capillary length. In this regime,
the elasticity of the line is described by the line tension
u.

(20) Benvegnu, D. J.; McConnell, H. M. J. Phys. Chem. 1992, 96,
6820-6824.

(21) Sekimoto, K.; Oguma, R.; Kawasaki, K. Ann. Phys. 1987, 176,
359-392.

(22) Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.;
Academic Press: London, 1985.

(23) Noblin, X. Rapport de stage de DEA de Physique des Liquides,
Université Paris 6, 2000.

Table 1. Relevant Physical Constants for the System
Water (A)/CCl4 (B)

γA γB γAB

interfacial tension (mN/m) 72.8 26.7 45

FA FB F̃

volumic mass (kg/m3) 1000 1590 371

κA
-1

κB
-1

κAB
-1

capillary length (mm) 2.72 1.31 2.79
S ) -91.1 mN/m
ec ) 7.08 mm

Eel ) 1
2

γ̃θ2∫-∞

∞
dq (xκ

2 + q2 - κ)|uq|2 (23)

V
πR2

= ec - (∆V
πR

-
ecu
2|S|)1

R
(24)

Figure 4. Experimental setup to measure line tensions. The
line is anchored at the Teflon/glass boundary and exerts a force
f ) 2u cos θ on the strength sensor. The picture is a top view
of the strength sensor and the line making an angle 2θ.

Figure 5. Plot of the force (f) acting on the line versus cos θ.
2θ is the angle made by the contact line stretched by the metallic
rod coupled to the strength sensor. The slope is 2u.
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3.1. Observations. We used the same container as for
static measurements and the same method to have a
straight line at rest. We anchored one end of the line on
a metallic rod linked to the moving part of a tracing table.
The motion is sinusoidal (u0 sin(ωt)), with the amplitude
(u0) ranging from 1 to 5 mm and the frequency (ω) ranging
from 1.5 to 60 rad‚s-1 (0.25 to 10 Hz). The modulations
of the line are recorded by a CCD camera placed above the
container (Figure 6). Frequency was measured by looking
at the movement of the rod on video images (25 or 50
images per second). The error is of the order of 0.5%. The
contact line can be easily observed because of strong
refraction of light in the menisci zone. The curvature of
fluid interfaces, by a “lens effect”, induces a strong local
change in intensity and allows us to measure the
wavelength of the waves.

Viscous attenuation of the waves is clearly observed
but the change of the relation between frequency and
wavevector (propagative part) is not significant in the
explored regime. If we notea the viscous attenuation decay
length, we have a/λ = 10. When waves reach the end of
the container, they are reflected and interfere. Due to
partial reflection and viscous attenuation, to characterize
the wave pattern, we must include r (the amplitude-
reflection coefficient) and a.

When a is smaller than the container lentgh (L), re-
flected waves do not contribute to the total amplitude,
and we can measure the wavelength directly by observing
the undulations. In Figure 7 (top), we can assume that
reflected waves have negligible effects for measuring the
wavelength.

When a becomes of order L, we cannot neglect reflected
waves. Then, one way to measure the wavelength is to

look at the line just after the beginning of excitation and
before the wave reflection (transient period).

When a becomes larger than L (for slow modes,
λ = 5 f 12 cm), we can use stationary waves to measure
λ: the goal is to find, for different spatial modes, the
frequency where we reach standing wave conditions (for
a line anchored at one end, it is given by L ) (2n + 1)(λ/4)).
The wave pattern cannot be completely stationary because
of dissipation and partial reflection, but we can find the
frequency where this condition is the best defined (Figure
7 (bottom)). By looking at the wave pattern when the
amplitude is maximum, we can measure directly the
wavelength.

Values obtained by stationary conditions and direct
values are in good agreement. On a log-log plot the
experimental points (Figure 8) give ω ∝ q1.51. The exponent
is very close to 3/2.

We noticed that the excitation of triplons for frequencies
higher than about 10 Hz is more difficult, because the
moving rod can induce surface waves on the two fluids
which are coupled to line waves. We cannot observe the
modes localized at the triple line anymore.

We have also excited the line waves with a completly
different setup. We performed electrostatic excitation with
an electrode close to the line at high voltage (of order 2
kV) in the same frequency range. The shape of the electrode
has to be optimized to induce line waves and not surface
waves. We observed that the ratio between the line wave
amplitude and the surface wave amplitude seems to
decrease as frequency increases. For low frequencies (less
than 1 Hz), triplons are strongly dominant. The advantage
of this technique is that it allows easy exploration of the
regime of short wavelengths, but as frequency increases,
surface waves show up.

3.2. Interpretation. We derive here the general struc-
ture of the dispersion relation from a global force equation
for the motion of the contact line, ignoring numerical
coefficients. An exact calculation, with a full description
of the flow field is given in the appendix. The deformation,
for a mode of wavevector q, can be written as u ) uqeiωteiqx.
The modes observed propagate and are governed by a
balance between inertial, elastic, and viscous forces:

where M is the mass of liquid put into motion, ü is the
acceleration, and fV is a friction force associated with the

Figure 6. Experimental setup to measure the dispersion
relation of triple line waves. The line is anchored to one end at
the Teflon/glass boundary. At the other end, a metallic rod
gives to the line a sinusoidal motion, which propagates along
the liquid/liquid/air contact line.

Figure 7. Pictures of triple line waves at the border of a water
puddle lying on a CCl4 substrate. Top: f ) 4.6 Hz; the viscous
decay length is small compared to the container size, and
reflected waves are negligible. Bottom: f ) 0.5 Hz; stationary
waves patterns allow us to measure the wavelengths as a
function of frequency.

Figure 8. Plot of the excitation angular frequencies (ω) versus
wavevector (q) for the triple line waves (triplons) of a water
puddle floating on a CCl4 substrate. We find ω ∝ q1.51.

-uq2u ) Mü - fV (25)
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viscous dissipation in both liquids. We now discuss M to
derive the dispersion relation in the inertial regime and
fV, which controls the damping of the modes.

(a) Mass M of Triplons. To estimate M, we assume that
the floating liquid behaves like an incompressible mono-
layer of thickness ec on the water side and thickness e′ )
FAec/FB on the CCl4 side. The 2D plug flows, as shown in
the appendix, are screened out at a distance q-1. Below
the A/B interface, the velocity field induced by the triplons
at frequency ω penetrates within a thickness hω ) (ηB/
FBω)1/2. hω is the boundary layer thickness. An essential
parameter is the ratio hω/ec. The inertial regime studied
here corresponds to hω , ec. When hω > ec, we enter in the
viscoinertial regime where the real and imaginary parts
of ωq are comparable.5 Another parameter is the depth H
of the B liquid bath. If hω/H > 1, we enter in the “shallow”
regime, and hω ) H (the flows are simple shear flows). To
summarize, M ) 2FA(ec + hω)q-1.

For the inviscid mode, neglecting fV in eq 25 and
assuming hω , ec, we obtain the dispersion relation

where we have included the numerical coefficient derived
in the appendix.

(b) Damping of the Inertial Modes ) Discussion of fV.
The friction force fV is the sum of the friction associated
(i) with the plug flow in the upper layer fVu ) (ηe + ηBe′)qŭ
and (ii) with the vorticity flows induced in the B bath fVb
) ηBuq-1/hω. For the long wavelengths studied here, fVu
, fVb and we can assume that fV = ηBu/(qhω).

(c) Dispersion Relation. (i) Thin Bath: hω ) H. In this
limit, eq 25 can be written as

where ω1 ) ηB/HFAe.
For ω . ω1, we have a propagative mode of wave vector

where q0(ω) is the solution of eq 26 for inviscid liquids.
The oscillation of the rodu ) u0eiωt induces an undulation

of the contour: u ) u0eiq0(ω)xe-x/a, which propagates up to
a distance a along the line with aq0 ) ω/ω1.

Remark 1: If ω < ω1, the mode is damped (viscous
regime): iω ) -uq3H/ηB.

(ii) Thick bath: hω ∝ ω-1/2 < H. In this limit, eq 25
becomes

where ω2 ) (ηBFB)/(F2e2). The complex wavevector solution
of eq 29 is

The length a of damping is given now by aq0 ) (ω/ω2)1/2.
Remark 2: If ω < ω2, we expect a viscoinertial regime

3.3. Discussion. (1) Dispersion Relation of gravity
Triplons. We have observed propagating triplons with
water floating on a thick CCl4 bath. This is in agreement
with our predictions, because our frequency range (0.25-
10 Hz) is always larger than ω2 ) 510-3 Hz, calculated
from eq 29. The dispersion relation determined experi-
mentally is

where k ) 1.09 instead of 1.
This result is compatible with our model. The ratio ω/ω2

gives the number of wavelengths which can be observed
before damping. It is in qualitative good agreement with
our observations.

(2) Gravity versus Capillarity. In the limitq >κ (capillary
regime), the elasticity of the line is anomalous and
described by eq 21. The balance between elastic and
inertial forces becomes

The mass of liquid put into motion is now M ∼ Fq-2θE.
Equation 32 leads to the dispersion relation in the capillary
regime

Thus, surprisingly, the scaling law (ω ∼ q3/2) is the same
in the gravity and the capillary regimes, but the numerical
coefficient is different.

Remark: We expect that this result is also valid for triple
lines at the edge of a liquid puddle on a solid substrate.
In ref 6, the prediction for inertial triplons was ω ∼ q3/2

in the capillary regime and ω ∼ q in the gravity regime.
The flow was assumed to be screened out over a length
κ-1. This was wrong. In fact, a modulation of the surface
pressure penetrates the liquid puddle on a scale q-1,
because the plug flows (on a solid or a liquid bath) are all
described by eq 36 (Appendix 1). This correction may help
to explain recent results with superfluid helium showing
that triplons are dispersive even at wavelengths larger
than κ-1.13

(c) Triplons versus Capillary Waves. At low frequencies,
we have observed one-dimensional modes of the triple
line. At high frequencies, they seem to be coupled to the
classical two-dimensional surface waves. We can under-
stand this by the following argument. In the gravity
regime, the surface waves obey the dispersion relation ω
) (gq)1/2. A vibration of the driving rod at frequency ω
couples to 1D waves of wave vector q0 and may also induce
2D waves of wave vector qs ∼ q0(q0/κ)2. As long as q0 , κ,
that is, in the gravity regime studied here, these waves
are well decoupled. But when q0 ∼ κ, a large mixing takes
place. To reduce this effect, one should use more wettable
liquids (ec , κ-1). In this limit, the capillary triplon (q0)
and surface ripple (qs) wave vectors should remain distinct
(qs ∼ q0oθE

3/2).
4. Concluding Remarks

A liquid substrate is free of defects and free of hysteresis.
It allows for complete studies of both static and dynamic
contact lines. A liquid puddle is limited by minimal lines
(arcs of circles). There is a 2D Laplace pressuresa small
puddle flows into a larger one, when they are put into

ω2 ) 1
2

uq3

FAec
(26)

uq3

FAe
) ω2 - iωω1 (27)

q ) q0(ω)(1 - i
3

ω1

ω ) (28)

uq3

FAe
) ω2 - iω3/2ηB

1/2FB
1/2

FAe
) ω2(1 - i(ω2

ω )1/2) (29)

q ) q0(ω)(1 - i
3(ω2

ω )1/2) (30)

1
uq

∝ u 2/3q2

FB
1/3ηB

1/3
(1 + i)

ω ) kx u
2FAec

q1.51(0.05 (31)

-γ̃θE
2qu ) M(q)ü (32)

ω ≈ xγ̃θE

F
q3/2 (33)
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contact-stretched by an external force, the deformation
of the contour allows a direct measure of the line tension
u.

For the dynamics, we have been able to follow the
vibrations of a triple line. Wavelengths up to several
centimeters have been observed. These gravity/inertial
modes were not accessible on a solid substrateseven on
a silanized silicon wafersbecause their energy becomes
extremely small, and the line is easily pinned by weak
defects on the substrate.

We have shown that long wavelength gravity triplons
obey the same scaling relation as short wavelength
capillary triplons. “Capillary” triplons, predicted theoreti-
cally in ref 4, have been observed recently on a solid
substrate with superfluid helium.13 The interpretation is
the following: for gravity mode (rope elasticity), the force
uq2u is balanced by Mω2u, with M ∼ ecq-1F. For capillary
modes (fringe elasticity) the force γqu is balanced by Mω2u,
with M ∼ θEq-2F. By some sort of coincidence, the two
laws look the same, although they are related to different
physical processes.
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Appendix 1: Complete Description of Inertial
Triplons

We derive here the flow field and the surface pressure
in the film induced by the deformation of the line. We
consider inviscid fluids with plug flows (Figure 9). The
modulation of the line gives rise to a surface pressure
difference between the A film and the bare substrate

The gradient of surface pressure generates 2D planar flows
vp ruled by a 2D Euler equation:

where Fe ) FAec ) FBe′. We look for sinusoidal modes written
as

Notice that eqs 34-36 will also describe capillary waves
at a liquid A/liquid B interface in zero gravity, with an
effective interfacial tension γAB ) u / ec.

Equation 35 becomes

We assume that the film is uncompressible. This is
correct if the triplons’ modes are slow compared to the
peristaltic modes in the film discussed in Appendix 2.
div(υbp) ) 0 leads to

The solution is on side A (y < 0) Πs ) ΠA0eqy, which
tends to zero far away from the line. On the side B (y >
0) Πs ) ΠB0e-qy

Equation 34 gives

We can calculate vy at both sides of the contact line

It gives ΠA0 ) -ΠB0 ) 1/2uq2u0. With υy ) iωu, we get

Appendix 2: Peristaltic Modes of the Floating A
Liquid

We have seen that the effective film surface tension is
γ̃B ) γAB + γA - 1/2F̃ge2. At equilibrium, e ) ec and γ̃B )
γB. If e is modulated around ec, e ) ec + Reiqyeiωt, the surface
pressure oscillates, and flows are induced in the film.

With the volume conservation

we get

The modes propagate at velocities (ge)1/2 = 26 cm/s. These
velocities are much larger than vF ) q1/2(u / 2Fe)1/2 (in our
experiments, 3 cm/s < vF < 10 cm/s. We can thus consider
the film as uncompressible.

LA020411O

Figure 9. 2D velocity profile of flows in the puddle (plug flows)
and in the substrate induced by triplons.

ΠA0 - ΠB0 ) -u ∂
2u

∂x2
(34)

Fe
∂υbp

∂t
) -∇BpΠ (35)

Π ) Π(y)ei(ωt-qx)
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u ) u0e
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iωFe

(37)

∆Πs ) 0 then
∂

2Πs
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- q2Πs ) 0 (38)

ΠA0 - ΠB0 ) uq2u0 (39)

νy(y ) 0) ) - 1
iωFe

dΠ
dy

|y)0 ) -
qΠA0

iωFe
)
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iωFe
(40)

ω2 ) 1
2

u
Fe

q3 (41)

Fe
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