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Abstract. This study focuses on the effects of vertical vibrations on sessile drops
deposited on hydrophobic substrates. At low amplitudes the contact line remains
pinned because of contact angle hysteresis and only drop surface modes are
observed. Above a first threshold the contact line starts to move and exhibits
a stick-slip behavior that presents some analogies with the solid friction on a
mechanical oscillator. At larger amplitudes, non-axisymmetric contour modes
show up (modes m = 2, 3 . . .). They can be interpreted as a coupling between
surface modes and contact line motion. These subharmonic modes are well
described within the framework of parametric oscillators. We also discuss here
why vibrations can help to measure equilibrium contact angle.

1 Introduction

The study of oscillations present at the surface of free liquid drops is a classical problem [1,2].
But, more recently, articles concerning vibrations of supported drops have focused attention due
to their potential applications for crystal growth [3], atomization [4] and droplets manipulations
[5,6] (see [7] and references therein). In [5,6] substrates are submitted to horizontal vibrations,
which can lead to drop motion when the excitation is non sinusoidal. Here we focused on
vertical vibrations and the response of a sessile drop lying on a solid substrate with a moderate
contact angle hysteresis (defined as the difference between the cosine of receding and advancing
contact angles: H = cos(θr)− cos(θa)). Drop size ranges from mm to cm radii, the bigger drops
are then flattened by gravity. For increasing amplitude of vibration, and depending on the
frequency, we observed three successive types of modes. We describe axisymmetric modes with
fixed (section 2) then moving contact line (section 3). In section 4, we discuss the application
to contact angle measurements and in section 5 the non axisymmetric (contour) modes.

2 Axisymmetric modes: Fixed contact line

Substrates made of polystyrene (θa = 92
◦, θr = 78◦) or Teflon (θa = 125◦, θr = 115◦) were

placed in a closed vessel to reduce evaporation and contamination effects. They were attached
to the moving part of a loudspeaker (driven by a function generator and a power amplifier)
giving a periodic acceleration (frequency fE between 5−100Hz): a = −(2πfE)2u0 cos(2πfEt),
where u0 corresponds to the amplitude of motion (Fig. 1(b)).
At low amplitude of vibrations, drops (ultra pure water) exhibited forced oscillations at

the same frequency as excitation. We measured response spectra, looking at the surface slope
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Fig. 1. (a) Resonant frequencies for fixed contact line modes. (�) j = 2, (◦) j = 3, (�) j = 4, (�) j = 5
and (•) j = 6. The straight line represents our wave model. (b) Moving contact line mode experimental
setup.

oscillations using the refraction of a laser beam, by Fourier transform of a white noise excitation,
normalized by the acceleration. This gave us successive narrow peaks corresponding to resonant
frequencies (mode j = 2, 3 . . .) [7]. j is half the number of nodes along the drop profile (Fig. 1(a)).
These modes can be seen as stationary surface waves, their exact calculations have been

made in the capillary regime [8]. In our case, drop can be flattened by gravity, to simplify the
problem and to have a simple prediction for the eigen frequencies values, we assume that the
mode wavelengths are: λj =

2π
qj
= 2p
(j−1/2) , p is the meridian drop profile length. We calculate p

as a function of the drop volume using numerical integration of the drop profile. From the 1D
dispersion relation of capillary-gravity waves on a liquid bath of depth h (here the mean height
is: hm =

V
πR2
), we found [2]: ω2j = (gqj +

γ
ρ
q3j ) tanh(qj

V
πR2
).

We have traced ω(q) (Fig. 1). Our prediction with the model is satisfactory, except for the
first mode (j = 2), where the discrepancy reaches 8% for the drop sizes studied.

3 Axisymmetric modes: Moving contact line

At higher excitation amplitudes, the contact angle variations can exceed the contact angle
hysteresis, putting the contact line into motion. These modes were imaged (side view) with a
high speed camera (1000 image/s). The axis of view is slightly tilted (3◦ above horizontal): we
see the drop profile and its reflection on the substrate (see Fig. 1(b)). By image analysis, we
calculated the contact angle value and the contact line position. We used a sinusoidal signal to
obtain spectra for the radius and contact angle oscillation amplitude as function of frequency.
We could check that the contact line starts to move when the contact angle variation (∆θ)

becomes larger than θa−θr: the vibrations overcome hysteresis. At low acceleration amplitude,
the contact line moves only for frequencies close to the pinned modes resonance. In large
frequency domains, the contact line remains pinned by the substrate. The motion is complex
and presents a stick-slip behavior: the contact line is pinned during a part of the time (stick),
then it advances (slip), stops for a while (stick), goes back (slip) and so on. This behavior can
be explain by the force of hysteresis, which acts as a “solid friction” on the moving line.
The drop behaves like an oscillator with solid friction, ruled by the equation: ẍ + ω20x +

µ sgn(ẋ) = A cos(ωt) (see [7] for details, x = R−Req). Where µ is the solid friction coefficient
(proportional to H), sgn(u) is the function (±1) sign of u. ω0 is the natural frequency of the
oscillator. Such system has been studied for instance in [9]. Authors found different possible
motions depending on the ratio A/µ and ω/ω0, they observed stick-slip motion (with 2 stops
per period or more) and also pure slipping oscillatory motion with no stop. We could observe
experimentally several features coherent with this forced solid friction oscillator model [7].
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This phenomena can be used to suppress the effect of hysteresis using vibrations. It can be
selective on the drop size by tuning the frequency. An application is the possibility of displacing
drops on a substrate more easily using another force field (electrical for instance). In our case
gravity plays this role, when there is a very small tilt of the substrate, drops are displaced
quickly, (all the substrates were slightly curved for that reason). From R(t) − θ(t) curves we
can easily measure the velocity curve v(θ) and probe contact line dynamics, extending classical
studies to the inertial regime.

4 Why vibrations can help measuring the equilibrium contact angle?

We discuss here a method to measure equilibrium contact angle θE . In [11], vibrations are
used empirically with that goal on rough substrates. We propose to make clear why this is
possible and how. When one deposits a drop on a horizontal flat solid substrate, the contact
angle measured can have any value θi belonging to [θr, θa], depending on the way it has been
deposited. When such a drop is at rest, with an angle θ it is in mechanical equilibrium, but
not necessarily in thermodynamical equilibrium (the system is in a local energy minima, but
not in the global one given by θ = θE). Due to volume conservation, there is a non ambiguous
relation R(θ). We can calculate exactly this relation in the two limits: 1) R � κ−1, the drop
is a portion a sphere, hence: R = (3V/(π(1 − cos θ)2(2 + cos θ))1/3. 2) R � κ−1, the drop is
a flat puddle (penny shape), hence: R =

√
V/(2πκ−1 sin(θ/2)). This means that there is only

one value for the radius that corresponds to θE : RE . In the general case, numerical integration
for the drop profile is necessary.
The method consists in inducing vibration near a resonance, to put the contact line into

a large axisymmetric motion, then to reduce slowly the amplitude until the radius stops to
oscillate. The resulting stick slip motion will lead in the plane (R, θ) to a cycle as sketched in
Fig. 2(b)), with R constant when θ ∈ [θr, θa]. The first cycle is represented, then the forcing
amplitude is reduced at each period, describing successive cycles with decreasing amplitude
in radius. When the drop stops to move, the corresponding point on the diagram is on the
R(θ) curve somewhere inside the last cycle, which can be very small in radius amplitude and
lead to an angle very close to θE . As mentioned earlier, this is because the drop tends to its
thermodynamical equilibrium, which correspond to a global energy minimum, at θ = θE with
the help of vibrations that allow the exploration of the potential energy landscape. Only a few
periods are necessary on a smooth substrate.
If large vibrations are stopped too quickly, the θE value can be missed. In addition the hys-

teresis has to be moderate or the contact angle sufficiently high so that the drop can actually be
put in motion, if not, the drop will break up into droplets. The choice of the frequency is imp-
ortant to avoid modes that could perturb the drop stop or induce unwanted non-axisymmetric
modes as described in the following.
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Fig. 2. (a) Contact line position (top) and contact angle (bottom) as a function of time for different
accelerations. (b) Cycles during decreasing amplitude from θi (I) to θE (F) in the (R, θ) plane.
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Fig. 3. (a) Mode m = 0, below the threshold, fE = 9Hz. (b) m = 3, fE = 9Hz. (c) m = 2, fE = 6Hz.
Frame rate = 2/fE . (d) m = 0 (top) and m = 3 (bottom) amplitudes vs. time, R = 11mm, fE = 10Hz.

5 Contour modes

We have used the same apparatus as described in section 3 but the high speed camera was
used to image the drops from above to measure their contour R(θ, t) by image analysis. We
took the Fourier transform of this function to determine the amplitude of each mode m for each
image. For particular frequencies and sufficiently high amplitudes (above the contact line motion
threshold) we observed star shaped mode (m = 2, 3, 4 . . .). These modes are subharmonic, they
are due to an exchange between potential energy stored in the elastic deformation of the contact
line and kinetic energy of the moving fluid. This lead to triplons: propagation of wave along
the contact line. The vibrations of a drop allow to observe these modes since hysteresis effects
are reduced and to excite them parametrically, leading to discrete modes, corresponding to:
Um(θ, t) = um(t) cos(mθ). The frequencies are given by [12]: ω

2
m = C

γ
ρ
m(m2− 1)/R3, with C a

function of θE . We see that if R varies with time, we have a parametric oscillator. This happen
at sufficiently high oscillation amplitude, assuming R(t) = Re +∆Rcos(ωEt), we found in first
approximation for a mode um(t): üm + ω

2
m(1 + h cos(ωEt))um = 0, with h = 3∆R/R.

The main oscillation frequency is half the excitation frequency, the instability grows expo-
nentially and the characteristic time associated diverges close to the threshold. Note that the
control parameter is h = 3∆R/R which makes the coupling with contact line modes complex
and highly dependant on frequency, all the modes cannot be observed for a given drop size.

6 Conclusion

Vertical drop vibrations lead to different modes involving surfaces waves, contact line dynamics
and parametric instabilities. It can lead to true determination of equilibrium contact angles,
complex drop manipulations and allows promising studies on inertial dynamics.
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