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Abstract. We study the effects of vertical vibrations on non-wetting large water sessile drops flattened
by gravity. The solid substrate is characterized by a finite contact angle hysteresis (10–15 degrees). By
varying the frequency and the amplitude of the vertical displacement, we observe two types of oscillations.
At low amplitude, the contact line remains pinned and the drop presents eigen modes at different resonance
frequencies. At higher amplitude, the contact line moves: it remains circular but its radius oscillates at
the excitation frequency. The transition between these two regimes arises when the variations of contact
angle exceed the contact angle hysteresis. We interpret different features of these oscillations, such as the
decrease of the resonance frequencies at larger vibration amplitudes. The hysteresis acts as “solid” friction
on the contour oscillations, and gives rise to a stick-slip regime at intermediate amplitude.

PACS. 47.55.Dz Drops and bubbles – 68.08.Bc Wetting – 47.35.+i Hydrodynamic waves

1 Introduction

We focus on forced oscillations of water sessile drops ly-
ing on a flat substrate characterized by a moderate con-
tact angle hysteresis defined as the difference between the
cosinus of receding and advancing contact angles H =
cos(θr) − cos(θa). The drops are flattened by gravity and
the substrate is vertically vibrated with a loudspeaker.
Depending on frequency and amplitude, we observe two
regimes of axisymmetric oscillations for the drop: Type I,
where the contact line remains fixed and Type II, where
the contact line oscillates. The first modes occur at low
amplitude, whereas Type-II modes appear above a thresh-
old amplitude.

Oscillations of supported drops and inertial contact
line dynamics raise fundamental questions and have prac-
tical applications. The oscillations of spherical liquid drops
have been studied for more than a century by Kelvin,
Rayleigh, Lamb [1]. . . Less works concern the case of
sessile drops on a solid support. The first experimen-
tal [2] and theoretical [3] studies were motivated to un-
derstand the influence of liquid drop vibrations on crys-
tal growth in microgravity. Different studies followed [4–9]
with several practical and scientific applications such as
dynamic surface tension measurements (see [10] and ref-
erences therein) and droplet ejection [11–13]. Oscillations
of drops with a solid support are also related to their im-
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pacts [14,15] and rebounds [16,17] on the surface, with
applications ranging from herbicide and insecticide depo-
sition to inkjet printing and microvolume deposition. Most
studies of supported drop oscillations concern fixed con-
tact line conditions or no contact line at all, for example
for air-levitating drops [18]. In [6,7], the hysteresis of the
substrate is not characterized and no particular attention
is given to differentiate between modes I and II. The only
work which treats the case of two kinds of modes is a nu-
merical study [19] with the two idealized cases of fixed
contact line (Type I) and fixed contact angle with free
contact line (what we will call later “pure Type II”). Our
study is the first experimental work investigating the ef-
fect of hysteresis on supported drop oscillations leading
to stick slip motion of the triple line. Varying frequency
and amplitude, we are able to observe the two types of
modes with the same system. Another aim of our work is
to provide a simple model to estimate the resonance fre-
quencies for the Type-I and pure-Type-II modes based on
stationary wave conditions for capillary-gravity waves.

Another aspect concerns the fast dynamics of contact
lines. Many studies focus on viscous liquids with applica-
tions in liquid coatings, paint deposition, spraying of her-
bicides or insecticides. . . Much less work deals with the
inertial case and unsteady motion of the contact line. Os-
cillating motions of fibers or plates immersed in a liquid
bath have been studied for both model and hysteretic sub-
strates [20–22]: different motions of the contact line such
as pure stick, stick-slip and pure slippage are described
and are similar to those observed in our study. Our aim,
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Fig. 1. Schematic representation of the drop profiles for the
modes j = 2 (4 nodes) and j = 3 (6 nodes) (Nodes are empha-
sized with black spots).

here, is to study the inertial contact line motion for ses-
sile vibrated drops, where the modes are discrete because
the size of the drop is finite, and to focus on the role of
hysteresis. As far as we know, this is the first study of the
problem.

In Section 2, we study Type-I modes. We present the
experimental setup. We measure the spectra of the eigen
modes. We interpret our results as stationary capillary-
gravity waves on the drop interface.

In Section 3, we study Type-II modes. We use another
experimental setup to follow the contours of the drops.
The resonance frequencies are compared to the frequen-
cies of Type-I modes. We interpret the shift of eigen fre-
quencies via a modification of boundary conditions. We
observe carefully the variations of the contact angle and
the contact line position during the vibration of the drop.
A regime of stick slip is observed at intermediate ampli-
tude: the hysteresis is analogous to a solid friction acting
on the line.

2 Type-I modes: immobile contact line

A drop of volume V , lying on a polystyrene substrate is
subjected to a low amplitude periodic acceleration of fre-
quency f :

a = −(2πf)2u0 cos(2πft),

where u0 is the spatial displacement of the substrate.
We observed axisymmetric surface waves on the drop.

The contact line remains pinned by the substrate due to
wetting hysteresis. These oscillations are the superposition
of eigen modes characterized by a number j. j is half the
number of nodes along the drop profile (Fig. 1).

Each mode j has a resonance frequency fj . By varying
the excitation frequency f and the drop volume V , we
were able to measure the resonance frequencies fj for j
ranging from 2 to 6.

2.1 Materials and methods

An ultra-pure water drop is deposited on a Petri dish
(polystyrene) which is slightly concave to avoid the es-
cape of drops at high-amplitude vibrations. We mea-
sure the receding and advancing contact angles for the
air/water/polystyrene system (see Tab. 1).

Table 1. Advancing and receding contact angles.

θa θr ∆θ = θa − θr

92± 1◦ 78.5± 1◦ 13.5± 2◦

Fig. 2. Schematic representation of the experimental setup:
the laser beam deflection at the air/water interface gives the
local slope of the drop at distance r from its center.

A loudspeaker is used to vibrate the substrate (maxi-
mum peak-to-peak displacement 14 mm). It is linked to a
power amplifier connected to a digital function generator
or an Input/Output (I/O) computer board.

The vertical displacement of the substrate is measured
by the deflection of a laser beam (from a mirror fixed
on the moving part of the loudspeaker) using a Position-
Sensitive Detector (PSD) also connected to the I/O card
(Fig. 2). A program (Labview) measures simultaneously
the frequency and the acceleration with a 10 kHz acquisi-
tion rate.

The substrate is bound up with the moving part of
the loudspeaker. To avoid evaporation and contamination
effects, it is placed in a closed vessel with an optical win-
dow. Water drops with a volume ranging from 0.1 ml to
3 ml are deposited on the substrate.

We follow the fluctuations of the drop by looking at the
local variations of the air/water interface slope. A vertical
laser beam goes through the drop at a distance r from
its center, is refracted at the liquid/air interface and its
deflection is measured using a PSD. For each value of the
radius r, we performed angle response measurement as a
function of frequency.

The experimental procedure is repeated for many
drops of increasing volume. Our aim is to determine the
relative amplitude of each mode j as a function of r. For
r = 0, the amplitude of all modes is zero. Two excita-
tion signals are used to probe the response of the drop.
First, we use a pure sinusoidal excitation. By varying the
frequency at constant acceleration and measuring the re-
sponse amplitude, we obtain a frequency response spec-
trum. In a second type of experiment, we send to the
loudspeaker a white noise signal. We perform a Fourier
transform of the response signal. We normalize it by the
measured acceleration spectra. The time required to have
the same resolution as for a pure sinusoidal signal is



X. Noblin et al.: Vibrated sessile drops: Transition between... 397

0 20 40 60 80 100 120 140 160

0,000

0,005

0,010

0,015

0,020

0,025

a
.u

.

Frequency (Hz)

Fig. 3. Normalized response spectra: air/water interface slope
oscillations for the drop at a distance r = 1.5mm from its
center (V = 1mL).

significantly reduced. We focused on resonance frequen-
cies values and not on precise amplitude measurements.

Special care is devoted to the deposition of drops be-
fore each measurement. Due to the wetting hysteresis, the
contact angle after drop deposition ranges between [θr, θa].
To work in well-defined conditions, we start our measure-
ments from the mean equilibrium angle θE. By vibrating
the drop at high amplitude and a well-chosen frequency,
as we will see in Section 3, we put the contact line into pe-
riodic motion. The contact angle reaches a mean value θE.
We verify that cos(θE) = (cos θr + cos θa) /2, in agreement
with previous studies when the surface is smooth; this is
not always true on rough surfaces [23–25]. By reducing
the excitation amplitude, we return to a pinned contact
line situation and we can begin the measurements with a
contact angle value at rest equal to θE.

2.2 Spectra

We measure slope response spectra for twelve drop
volumes ranging from 0.1mL to 3mL (with correspond-
ing radius ranges from 4.2mm to 17.6mm). The drops
are increasingly flattened by gravity (capillary length
κ−1 = 2.7mm). We present an example of such spectra
on Figure 3.

We note that the j = 2 peak has a relative low am-
plitude compared to the other modes. As mentioned in
Section 2.1, it is simply due to the particular location of
the laser beam from the drop center.

We measure different spectra for different values of r.
We verify that the peak positions remain unchanged, only
their relative amplitudes vary. We present in Figure 4 a su-
perposition of the different spectra obtained with increas-
ing values of r. We note that the maximum amplitude of
each mode decreases when mode number increases.

2.3 Resonance frequencies

The log-log plot of resonance frequencies as a function
of drop volume V is shown in Figure 5. We see that
frequencies increase with mode number and decrease with
drop volume. The exponent of the power fit increases
from 0.45 to 0.53 with mode number going from j = 2 to
j = 6. These fits are empirical guides, we only expect a
true power law in the limit of pure capillary and gravity
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Fig. 4. Superposition of spectra obtained at 8 different posi-
tions of the laser beam from the center of the drop for r ranging
from 0 to 6.5 mm (V = 1mL).
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Fig. 5. Log-log representation of the resonance frequencies
versus drop volume. The variations are well described by a
power law with an exponent close to 0.5, it increases from 0.45
for j = 2 to 0.53 for j = 6 (straight lines).

regimes (for both of them, as we will see later f ∝ V 0.5

for a given mode). In the cross-over region the relation is
more complex but it is not surprising to find an exponent
close to 0.5.

2.4 Interpretation

The different modes are stationary surface waves. The
nontrivial equilibrium shape of the drop leads to a compli-
cated three-dimensional wave pattern. An analytical de-
scription can be obtained only in the capillary regime as-
suming that the drop is in partial contact with a spherical
substrate [3]. Complex numerical simulations are needed
to solve the problem with gravity [10] and no analytical ex-
pression is available to calculate the resonance frequencies.
To simplify the problem, we consider the waves as one di-
mensional. We calculate pseudo wave vector values qj(V )
for each mode number and drop size. From the dispersion
relation of capillary-gravity waves, we obtain approximate
theoretical values for the eigen frequencies, which are com-
pared to the resonance frequencies measured.
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Fig. 6. Pseudo wavelength for mode j = 3.

To calculate the pseudo wavelengths λj =
2π
qj
, we write

that it is the mean distance between two consecutive nodes
along the drop profile. With p the arc length of the merid-
ian curve from the center to the edge of the drop at equi-
librium (see Fig. 6), we find the relation (j−1/2)λj = 2p.
Then

qj =
2π

λj
=

π(j − 1/2)

p
. (1)

For a sessile drop at equilibrium, p depends on drop
volume and contact angle, taken at its equilibrium value
θE = 85◦ for our system. No analytical expression exists
in the general case, so we calculated numerically various
exact drop profiles and deduced the values of p as a func-
tion of the drop volume. We finally deduced the pseudo
wave vector values qj for each mode.

In our experimental conditions, inertia dominates vis-
cosity effects. The Reynolds number, calculated with the
phase velocity and the wavelength, has characteristic val-
ues between 100 and 1000. For small oscillations the modes
are decoupled and present a linear behavior. Hence, we ob-
served a common resonance phenomenon for each mode
when the excitation frequency is close to its natural fre-
quency. For 1D capillary-gravity waves on a liquid bath of
depth h with wave vector q, we have [26]

ω2 =

(

gq +
γ

ρ
q3

)

tanh (qh) . (2)

We used for q the values given by the approximate
relation equation (1).

For the depth h, we take the mean height of the drop
profile hm, defined by

hm =
V

πR2
. (3)

We then obtain

ω2
j =

(

gqj +
γ

ρ
q3
j

)

tanh

(

qj
V

πR2

)

. (4)

We compare in Table 2 experimental results and cal-
culated values with our 1D model for two different drop
volumes. We took γ = 72.8mN ·m−1, ρ = 998 kg ·m−3

and g = 9.81m · s−2. We note a good agreement, except
for the mode j = 1 where our model is more approximate.

We plot the resonance frequencies as a function of q
on a log-log plot (Fig. 7). We show in the graph the slopes
3/2 and 1 corresponding to capillary and gravity regimes,

Table 2. Comparison of the resonance frequencies (in Hz)
between the model and the experiment (V = 0.1mL, and
V = 2mL).

Mode number j V = 0.1 mL V = 2 mL
Exp. Model Exp. Model

2 32.7 35.5 8.6 9.1
3 71.8 75.2 17.2 17.3
4 119.8 123.5 27.0 27.1
5 174.7 178.9 38.1 38.1
6 238.6 240.9 50.7 50.4
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Fig. 7. Log-log representation of the resonance frequencies as
a function of the wave vector. (/) j = 2, (◦) j = 3, (¦) j = 4,
(.) j = 5 and (•) j = 6. The straight line represents calculated
values of the model. Drop volumes vary from 0.1 mL to 3 mL.

respectively. The straight line is the calculated value of
our simple model.

All the frequencies fall quantitatively on a master
curve on Figure 7. The model for the wave vectors is
satisfactory in the range of drop sizes and frequencies
we explore.

Another important point is the synchronous response
of the drop: the response frequency is the same as the
excitation one. This is not the case in the Faraday exper-
iment, where a filled recipient of water is vibrated, and
subharmonic bulk surface waves are observed (often inde-
pendently of edges constraints). In our experimental situ-
ation, the modes are stationary waves strongly induced by
edges conditions. The meniscus emits waves towards the
drop center, which interfere constructively at resonance;
this is not a bulk behavior of a fluid interface.

We did not observe remarkable nonlinear behavior, ow-
ing to the low amplitude of the oscillations.

3 Type-II modes: mobile contact line

At low excitation amplitude, we have seen that the contact
line remains pinned by the substrate and the contact angle
is oscillating (Type I). For higher excitation amplitudes,
the contact angle variations can exceed the contact angle
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Fig. 8. Modes k = 1 (2 nodes) and k = 2 (4 nodes); nodes are
emphasized with black spots.

hysteresis, and the contact line can be put into oscillatory
motion (Type-II modes).

On a perfect substrate, with no hysteresis and no vis-
cous dissipation, we would observe pure-Type-II modes
with a condition of constant contact angle θ = θE as stud-
ied numerically in [19]. The same conditions apply for the
general inertial contact line motion [27]. With this condi-
tion, the number of wavelengths along the whole meridian
curve would be diminished by 1/2 (See Fig. 8). As for the
Type-I modes for which we used j number, we characterize
these modes with the number k, which is half the number
of nodes along the drop (see Fig. 8). We then have the
new relation: kλk = 2p instead of (j − 1/2)λj = 2p.

In our case, with hysteretic substrates, we observe os-
cillations of the drop radius at excitation frequency cou-
pled to oscillations of the contact angle. We cannot restrict
the motion to a simple condition of constant contact angle.
We will keep the number k to characterize all the oscil-
lations with a moving contact line although they are not
pure modes.

3.1 Experimental setup

To have a better understanding of the phenomena, we use
different complementary methods to study these modes.
In the following, we present the kind of information they
provide, their advantages and drawbacks. One of the prob-
lems encountered is how to differentiate between the real
contact line position and the position of the maximum ra-
dius of the drop projection for contact angles larger than
90◦. We then detail the experimental procedure.

The first method, using a laser line, gives a local value
of the instantaneous radius of the drop R(t). A laser line is
projected vertically on the drop along the radial direction,
with a part on the substrate, and a part on the drop, (see
Fig. 9). The rays that fall on the substrate are reflected
by a mirror underneath then by a beam splitter and are
collected by a photodiode. The rays that fall on the drop,
close to the contact line are reflected or refracted by the
interface and are not collected by the photodiode.

If the intensity is uniform along the laser line, the
intensity on the photodiode is proportional to the
position of the contact line. This is true if the contact
angle is less than 90◦. When the contact angle is greater
than 90◦, we measure the maximum position of the
projection of the drop on the substrate and not the real

Fig. 9. Experimental setup: observation of the local radius
variation with a laser line.

Fig. 10. Experimental setup for side-view drop visualization
during vibrations. In the lower part of the image, we see the
reflected image of the drop on the substrate. The angle of ob-
servation is 3◦.

contact line position. For large contact angle values, we
have discrepancies between the two quantities. A large
variation of the contact angle could be seen as a contact
line oscillation although it is pinned. This effect can be
misleading around the transition between the two types
of modes, where the amplitude of radius oscillations is
small. This method, which gives local information, is
not applicable for very large contact angles but has high
temporal resolution (tens of kHz). One advantage is the
possibility to vary successively amplitude or frequency
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Fig. 11. Transition between stick and stick-slip motions of the contour. Lower curves are contact angle (degrees) variations
versus time, the dashed line represents θE. Higher curves are the contact line position (microns) around the starting position
before vibrations. The six curves for different acceleration amplitudes are joined together in the same plot for comparison.
f = 9Hz, V = 1mL.

with a programmed excitation and to measure different
points in an automated way.

The second method uses a fast camera (up to 1000 im-
age/s) in two ways: i) From above, it gives the coordinates
of the contact line contour for each frame of a movie, then
the mean radius of the drop as a function of time. We have
global information. As for the laser method, we measure
the radius of the projected image of the drop. ii) From
a side view using an inclined mirror on the moving part
of the loudspeaker, we keep the camera along the vertical
axis, and the image of the substrate is then fixed in the
field of view. The axis of view is slightly tilted (3◦ above
horizontal): we see the drop profile and its reflection on
the substrate (see Fig. 10).

By image analysis, the edge profile of the drop close to
the contact line is determined. The program calculates the
baseline position and a polynomial fit of the profile gives
the contact angle value and the real contact line position.
Even for contact angles larger than 90◦, there is no vertical
projection effect. The main drawback of this method is
the time required to make a measurement compared to
the laser method.

Due to the high amplitude of excitation and complex
motion of the contact line, the phenomena studied are
nonlinear, hence we did not use a noise excitation and
Fourier transform method. We vary frequency f = ω/2π
and acceleration amplitude a0 of a pure sinusoidal sig-
nal. We perform two types of measurements to explore
the (f, a0)-space: i) Constant frequency to obtain transi-
tion curves between Type I and Type II as acceleration is
increased. We use the camera method (side view). ii) Con-
stant acceleration, to obtain frequency response spectra.
We use the laser line method in an automated way. The
camera method (top view) allows us to check that drops
remain circular during oscillations and is used for qualita-
tive observation.

3.2 Results

3.2.1 Threshold curves

We mainly look at the first mode (transition between
j = 2 to k = 1) because of its higher amplitude. There
are no particular differences for higher modes. We look
at the contact angle and contact line position variations
with the side-view camera method. The frequency is con-
stant and acceleration is increased (Fig. 11). At low ampli-
tude, the contact line is completely stuck by the substrate.
We clearly see that when the contact angle variation ex-
ceeds the contact angle hysteresis, the contact line starts
to move (the transition is close to the third curve, for
0.143 g). At higher excitation, the amplitudes of radius
oscillations rapidly increase, the contact angle variations
also increase and are no longer sinusoidal. From the radius
variations we clearly see a stick-slip behavior: the contact
line is pinned during a part of the time, then it advances
(slip), stops for a while (stick), goes back (slip) and so
on. The higher the excitation amplitude, the shorter the
pinned time is. This behavior can be explained by the
force of hysteresis, which acts as a “solid friction” on the
moving line (as we will see in Sect. 3.3).

We have plotted for different frequencies (around the
mode k = 1) curves of the amplitude of radius oscillation
∆R as a function of acceleration. When ∆R = 0, we have
only the Type-I modes. Above the transition, ∆R > 0, we
observe the Type-II modes.

We notice that the curve’s shape depends strongly
on frequency. The resonance frequency of the pinned line
mode for a 1 mL drop is 12 Hz. i) Close to this frequency
and for low acceleration, the amplitude of Type-II modes
is zero, then by increasing the acceleration, we see that
we have a threshold with a slope break-up. Above this
threshold we observe Type-II modes with increasing am-
plitude. It corresponds on Figure 12 to the 12 Hz curve.
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Fig. 12. Amplitude of radius oscillation versus acceleration
for different frequencies, V = 1mL.

ii) At lower frequencies, the transition is less abrupt and
the slope is still increasing with acceleration in the range
studied. The threshold acceleration value increases when
the excitation frequency moves away from resonance of
pinned modes: we need a higher excitation amplitude to
observe the Type-II modes when the frequency is far from
the resonance frequency of Type-I modes. Interestingly,
for such lower frequencies, when we increase further exci-
tation amplitude, the radius oscillation amplitude exceeds
that of the higher-frequency curve.

3.2.2 Spectra

Instead of measuring ∆R as a function of acceleration at
constant frequency, we also perform constant-acceleration
measurements to obtain frequency response spectra as for
pinned contact line modes in Section 2.2.

We observe in Figure 13 that at low acceleration am-
plitude, the contact line radius varies only for frequencies
very close to the resonance frequencies of the pinned
modes. Out of the resonance regions, the amplitude of
the radius oscillation is strictly zero: the line is pinned
by the substrate. At higher amplitude, the maximum
radius oscillation amplitude increases and the width of
the peaks increases too. We notice that, as for pinned
contact line modes, the response amplitude decreases
with mode number k.

We also clearly notice a shift towards low values for
the frequencies of the peak’s maxima. This decreasing in
the resonance frequencies with amplitude is a classical fea-
tures of non-harmonics oscillators, but it can have other
origins. We explain it with the surface waves model us-
ing a different condition for the contact line which is no
longer pinned, leading to smaller pseudo wave vectors, and
thus smaller frequencies. We indicate in Figure 13 the res-
onance frequencies of Type-I and Type-II modes as calcu-
lated using the model discussed in the next section. We
see that the complex modes we observed with a moving
contact line draw nearer to the asymptotic limit of pure-
Type-II modes at large fluctuation amplitude.
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Fig. 13. Peak-to-peak oscillation of the radius in mm for a
1.25 mL drop (R = 11.8 mm) at constant acceleration (0.1 g
to 0.4 g). The two vertical lines are the calculated values with
our waves model for Type-I modes (11.35 Hz) and pure-Type-II
modes (6.95 Hz).

3.3 Interpretation

We have studied the dynamics of a vibrated sessile drop
for which the contact line is moving. In the range of ampli-
tude and frequency studied, this motion is axisymmetric.
At low amplitude, the contact line remains pinned and
the contact angle oscillates around its equilibrium value.
When the excitation amplitude increases, the variation of
the contact angle becomes larger than the contact angle
hysteresis and the line is put into motion. For each drop
size and excitation frequency, there is a threshold value
of the excitation amplitude above which the contact line
is put into motion. This motion is periodic at the excita-
tion frequency as for the Type-I modes, but non-harmonic.
Both the radius of the contact line and the contact an-
gle are oscillating: we do not observe pure-Type-II modes,
which can be seen only on model substrates with no hys-
teresis. Moreover, the contact line motion is complicated
due to stick-slip behavior.

3.3.1 Frequency shift

To interpret the frequency shift, we used the same model
of pseudo wave vector and surface waves as for Type-I
modes, but with the limit condition of fixed contact angle
(see Fig. 8). It leads to a new set of pseudo wave vectors
and resonance frequency values. We have for the pseudo
wavelengths: kλk = 2p, and the wave vectors:

qk =
πk

p
. (5)

A mode j corresponds to a mode k = j − 1, we then

have: qk =
(

2k
2k+1

)

qj=k+1. We calculate the resonance

frequencies using equation (2).
We found experimentally that with increasing ampli-

tude, the frequencies of peak maxima are shifted toward
low values. The resonance frequencies diminish and come
close to the pure mode frequencies.
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3.3.2 Oscillator with solid friction

The hysteresis opposes a constant resisting force on the
moving line. The drop behaves like an oscillator with solid
friction, ruled by the equation

ẍ+ ω2
kx+ µ sgn (ẋ) = A cos (ωt) , (6)

where µ is the solid friction coefficient, sgn(u) is the func-
tion dependent on the sign of u: u > 0 ⇒ sgn(u) = 1
and u < 0 ⇒ sgn(u) = −1. ωk is the natural frequency
of the oscillator. Such systems have been studied in [28–
30]. Authors found different possible motions depending
on the ratio A/µ and ω/ωk. At low forcing amplitude the
oscillator is completely stuck, at higher amplitude, they
observe stick-slip motion (with 2 stops by period or more)
and also pure slipping oscillatory motion with no stops.

We observed in our experiments that under a threshold
in excitation amplitude, the contact line remains pinned
by the substrate. This is the first feature of solid friction
related to the hysteresis H. Just above the threshold, dur-
ing oscillations, the contact line remains pinned most of
the time. The time of immobilization of the line decreases
as the excitation amplitude increases. This is a second
feature of forced solid friction oscillators. At much higher
amplitude, we do not observe any stops and the contact
line is always moving.

Our aim is now to derive equation (6) for the first
mode (k = 1) in the simple case of large drops flattened
by gravity (see [18,31]).

The total energy is the sum of gravitational energy Eg,
surface energy Es and kinetic energy Ec. Damping results
from the work Ls of the solid friction force. The energy
balance is

d

dt
(Eg + Es + Ec) = −

d

dt
(Ls) . (7)

The gravity and surface term represent a potential energy
E = Eg + Es. Gravity tends to flatten the drop and sur-
face energy to make it spherical and to reduce the drop
radius. The final shape results from a minimum of po-
tential energy at equilibrium. For the gravitational en-
ergy, we have simply: Eg = ρV gzm, with zm the height
of the center of mass. For surface energy, its varying part
is: Es = γALV + ASL (γSL − γSV) with ALV and ASL the
Liquid/Vapor and Solid/Liquid interface area.

For small oscillations, and constant contact angle θ =
θE, the potential has the general form

E = Eeq +
1

2

[

d2E

dR2

]

(R−Req)
2 (8)

which leads to the common oscillator equation after the

kinetic-energy calculation. The exact calculation of d2E
dR2 is

complex, but easy in the limit of very large drops (R À
κ−1). We can assume a cylindrical shape of radius R and
height h = V

πR2 .
The drop center of mass is zm = h/2. Hence, the grav-

itational term is simply

Eg =
ρgV 2

2πR2
. (9)

For the surface term, we write: ALV ≈ ASL ≈ πR2 and
S = γSV − (γSL + γ) = −γ (1− cos(θE)) the spreading
parameter. We have then

Es = −SπR
2 = γ (1− cos(θE))πR

2 . (10)

The potential is

E(R) = γ (1− cos(θE))πR
2 +

ρgV 2

2πR2
. (11)

We can derive a resulting force

F (R) = −
∂E

∂R
= γ (1− cos(θE)) 2πR−

ρgV 2

πR3
. (12)

The equilibrium radius is given by F (Req) = 0. Then:

ρgV 2

πR4
= 2πγ (1− cos(θE)) , (13)

which leads to heq = V
πR2

eq
= 2κ−1 sin

(

θE
2

)

. We have

[

d2E

dR2

]

R=Req

= 8πγ(1− cos(θE)) (14)

and around equilibrium, the potential is

E(R) ' 3γ(1−cos(θE))πR
2
eq+4πγ(1−cos(θE))(R−Req)

2 .
(15)

For the kinetic energy, we assume simple flows. We
denote vr and vz the radial and vertical velocity. The in-

compressibility equation div
−→
V = 0 leads to

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0 . (16)

Looking for simple solutions such as vr(r, t) and vz(z, t),
we find vr = r

R
dR
dt and vz = −

2z
R

dR
dt . We obtain the

kinetic-energy density

ec =
1

2

ρ

R2

(

dR

dt

)2
(

r2 + 4z2
)

. (17)

We have for the total kinetic energy in the large drop limit:

Ec =
1

4
ρV

(

dR

dt

)2

. (18)

We have cos θE = (cos θa + cos θr) /2. Then cos θE −

cos θa = cos θr − cos θE = H/2
The solid friction force by unit contact line length has

the same absolute value during advancing and receding
processes: F = γH

2 . The infinitesimal work done against
this force is for small oscillations

dLs = sgn(dR)2πRdR
γH

2
' sgn(dR)2πReqdR

γH

2
.

(19)
The derived energy balance (7) leads to a classical solid
friction oscillator equation with u = R−Req:

ü+ ω2
1u+ µsgn(u̇) = 0 (20)
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with ω2
1 = −

(

16πS
ρV

)

, µ =
2πReqγH

ρV
.

To take into account the harmonic forcing, we write
g? = g + a cosωt, the resulting force (Eq. (12)) is now

F ?(R) ' F (R)−
ρV 2

πR3
eq

a cos(ωt) . (21)

We finally obtain an equation similar to a classical
forced solid friction oscillator:

ü+ ω2
1u+ µsgn(u̇) = A cos(ωt) (22)

with A = 2
ρV

ρaV 2

πR3
eq

=
−2πSReq

ρV
a
g
.

The dynamics of such oscillators is controlled by the
two ratios [28]: Λ = A

µ
and Ω = ω

ω1
. In the (Ω,Λ)-

plane, different regions correspond to particular motion.
For Λ < 1 the line is completely stuck whatever the fre-
quency. For Λ ≥ 1 the line can move and presents stick-slip
motion, we have from equation (20) and equation (22):

Λ = (1−cos θE)
H

a
g
. The threshold condition to put the con-

tact line into motion is then given by:

a

g
>

H

(1− cos θE)
' 0.26 . (23)

This is in quite good agreement with the experimen-
tal values for frequencies close to the Type-II resonance
(Fig. 12). For frequencies closer to the Type-I resonance,
the threshold is lower (a/g ' 0.05) due to the coupling of
Type-I modes which is not included in this model.

A second threshold corresponds to pure slippage mo-
tion. In the particular case where Ω = 1, we have pure
slippage behavior for Λ ≥ 4

π
, that is

a

g
>

4H

π(1− cos θE)
' 0.32 . (24)

This value is close to the threshold observed.
Further studies are needed to make quantitative com-

parison for the different frequencies values and to take into
account the coupling of Type-I modes.

3.3.3 Other effects

In our system the analogy cannot be drawn far away be-
cause of the change in resonance frequency due to the
boundary condition effect, and the complex coupling be-
tween contact angle oscillation and contact line motion.

In [18], for gas levitation droplet oscillations, the
authors described nonlinear effects due to asymmetry in
the potential energy of the drop for larger and smaller
radius than the equilibrium radius. Equation (11) shows
clearly the nonharmonicity of the potential. These effects
also induce changes in resonance frequencies and influence
the dynamics.

The viscous dissipation in the edge near the contact
line may explain the deviation between dynamic and static
contact angles, as shown in Figure 11.

4 Conclusion

We study the mechanical forcing of a sessile flattened drop
of water on a polystyrene substrate. At low excitation
amplitude, the drops present axisymmetric modes of oscil-
lations with a pinned contact line condition, as long as the
contact angle variations belong to the interval [θr, θa]. The
oscillations are linear, and their spectra exhibit a set of
discrete resonance frequencies, depending on the drop size.
These modes can be interpreted with a simple model: 1D
approximate stationary-waves conditions coupled to the
dispersion relation of capillary-gravity waves. The theoret-
ical results are in good agreement with experimental data.

In a second part of the work, at a higher-amplitude
regime, above an acceleration threshold depending on
drop size and frequency, we observe nonlinear oscillations
of the drop radius. These behaviors have strong analo-
gies with forced dry friction oscillators, we observe for
instance stick-slip motion of the contact line at moderate
forcing amplitude.

By measuring response spectra at constant accelera-
tion as for the pinned modes, we find that in certain fre-
quency regions the contact line remains completely stuck.
This feature is original and due to the finite size of the
drop. In immersed plate experiments, due to infinite ex-
tension of the interface, such behavior cannot be observed:
there is no selection of frequencies due to stationary-wave
conditions. In regions close to resonance of pinned modes,
the radius oscillation amplitude is larger and presents res-
onance peaks, which are enlarged and shifted to lower fre-
quencies as the excitation amplitude is increased. This can
be explained by a modification of the boundary conditions
at the contact line for the surface waves. Using the same
model as in the first part, we find a simple relation be-
tween pure moving contact line modes (constant contact
angle) and pure pinned contact line modes that gives a
good order of the frequency shift.

Another application of our study using vertical vibra-
tions is to facilitate the motion of droplets under an ex-
ternal field (gravity, chemical gradients...). We have shown
that the line is no longer pinned above a threshold accel-
eration, where drops are free to move. Here we avoided
it using a slightly concave substrate, but it can be very
interesting for practical uses.

In a forthcoming publication, we shall describe nonax-
isymmetric modes of the contact line, which show up at
higher acceleration.
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